

# Identification of Factors Caused The Risk of Time Delays in The Pulogadung

Anwar Widiyanto Nugroho<sup>1</sup>, Tukiyo<sup>2</sup>, Herman Fithra<sup>3</sup>

<sup>1</sup>Department of Civil Engineering, Universitas Mercu Buana, Jakarta, Indonesia <sup>2</sup>Department of Educational Science, Universitas Widya Dharma, Klaten, Indonesia <sup>3</sup>Department of Civil Engineering, Universitas Malikussaleh, Aceh, Indonesia \*Corresponding author E-mail: anwar.widi12@gmail.com

#### Manuscript received 30 Nov 2021; revised 3 Dec 2021; accepted 10 Jan 2022. Date of publication 10 April 2022

#### Abstract

To provide livable housing for the residents of DKI Jakarta, especially in urban areas with minimal land availability, the DKI Jakarta Provincial Government supports the development of vertical housing to offset the high demand for housing and limited land. Through the Department of Public Housing and Settlement Areas, the Provincial Government of DKI Jakarta is implementing the Pulogadung-East Jakarta PIK Flats Construction Project. When this research was carried out, the Pulogadung-East Jakarta PIK Flats Construction Project. When this research was carried out, the Pulogadung-East Jakarta PIK Flats Construction Project was entering week 63, with work progress reaching 47.689% of the planned 48.725%, or in other words, this project experienced a delay of 1.036% of the scheduled. Therefore, it is necessary to conduct research that aims to identify the factors that cause the risk of time delays, analyze the most dominant factors that lead to the risk of time delays, and look for the necessary handling actions so that the risk of time delays that occur does not increase or can also be prevented or resolved. In this study, the descriptive quantitative method is carried out by surveys, interviews, and distributing questionnaires to respondents. The risk rating was analyzed using MS. Excel is based on a probability and impact matrix, which aims to determine variables with a high level of risk, then expert validation is carried out regarding risk management. And from the analysis results obtained, six variables that cause the risk of time delays in the Pulogadung-East Jakarta PIK Flats Development Project work can occur, namely Late Payment of Term by Owner, Design Changes, Lack of Coordination While Working, Inaccuracy of Material Order, Time, Limited Material Availability in the Market, and the Occurrence of the Corona Outbreak (Covid 19). The results of expert recommendations for the six variables can be expressed in handling actions.

Keywords: Risk Management, Time Delay, Construction Management.

# 1. Introduction

To provide livable houses for residents of DKI Jakarta, especially in urban areas with minimal land availability, the DKI Jakarta Provincial Government supports the development of vertical housing to offset the high demand for limited housing land. Through the Department of Public Housing and Settlement Areas, the Provincial Government of DKI Jakarta is implementing the Pulogadung-East Jakarta PIK Flats Construction Project. The project work is a manifestation of the efforts of the DKI Jakarta Provincial Government in providing public housing for the people of DKI Jakarta [1] [2].

When this research was carried out, the PIK Pulogadung-East Jakarta Flats Development Project was in its 63rd week, with work progress reaching 47.689% of the planned 48.725%, or in other words, this project experienced a delay of 1.036% of the project scheduled [3] [4]. With the planned implementation time of the project work, which is until October 2021, as well as the high complexity of the job if you look at the data on land area and the height of construction that is still to be built, the work of the East Jakarta PIK Pulogadung Flats Development Project cannot be separated from the risk of delays [5] [4]. Time and it is possible that the time delay that occurs at this time can be even more significant. Therefore, it is necessary to conduct research that aims to identify the factors that cause the risk of time delays, analyze the most dominant factors that lead to the risk of time delays, and look for the necessary handling actions so that the risk of time delays that occur does not increase or can also be prevented resolved [6] [7].

# 2. Method

In this study, the descriptive quantitative method is carried out by surveys, interviews, and distributing questionnaires to respondents [8]. The risk rating was analyzed using MS. Excel-based on the probability and impact matrix table, which aims to determine the variables with a high level of risk, then expert validation is carried out on risk management against the dominant threat [9] [10]. The following is a flow chart in this study [11] [9]:



Copyright © Authors. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

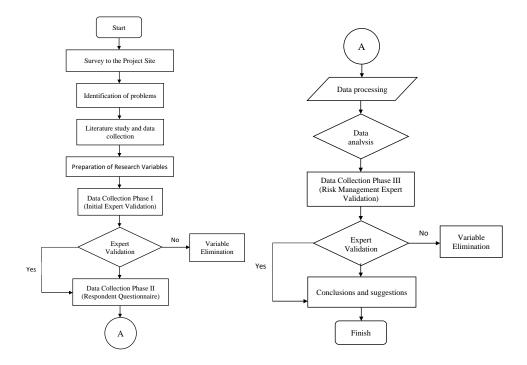



Fig 1. Research Flowchart

# 3. Results and Discussion

#### **3.1 First Stage Data Collection**

The first data collection stage is done by distributing questionnaires to experts, also called initial expert validation [9]. The first stage of data collection or initial expert validation aims to seek opinions from experts regarding the independent variables that have previously been compiled from the literature study, whether they are relevant to the risk of time delays [12] [13]. The following are the results of the first stage of data collection:

|          | Variabel                                                           |     | Exp | ert Res | Explanation |     |             |
|----------|--------------------------------------------------------------------|-----|-----|---------|-------------|-----|-------------|
|          | Vallabel                                                           | PL1 | PL2 | PL3     | PL4         | PL5 | Explanation |
| Labor Fa | actor                                                              |     |     |         |             |     |             |
| X1       | Insufficient Skill                                                 | Yes | Yes | Yes     | No          | Yes | Take effect |
| X2       | Lack of Skilled Manpower                                           | Yes | Yes | Yes     | Yes         | Yes | Take effect |
| X3       | Lack of Work Experience                                            | Yes | Yes | Yes     | No          | Yes | Take effect |
| X4       | Low Work Productivity                                              | Yes | Yes | Yes     | Yes         | No  | Take effect |
| X5       | Lack of Coordination at Work                                       | Yes | Yes | Yes     | Yes         | Yes | Take effect |
| X6       | Workers Ignore Work Safety and Security                            | Yes | No  | Yes     | Yes         | Yes | Take effect |
| Job Doc  | ument Factor                                                       |     |     |         |             |     |             |
| X7       | Design Change                                                      | Yes | Yes | No      | No          | Yes | Take effect |
| X8       | Changing Work Schedule                                             | Yes | Yes | Yes     | Yes         | Yes | Take effect |
| X9       | Low Document Control                                               | Yes | Yes | No      | No          | Yes | Take effect |
| X10      | Late Submission of Design Changes                                  | Yes | Yes | Yes     | Yes         | Yes | Take effect |
| X11      | Process of Requesting and Approval of Design Changes by Owner      | Yes | Yes | Yes     | Yes         | Yes | Take effect |
| X12      | There is a request for changes to the work that has been completed | Yes | No  | Yes     | Yes         | Yes | Take effect |
| Material | Factor                                                             |     |     |         |             |     |             |
| X13      | Delay in Material Delivery                                         | Yes | Yes | Yes     | Yes         | Yes | Take effect |
| X14      | Material Loss                                                      | Yes | No  | Yes     | No          | Yes | Take effect |
| X15      | Material Order Timeliness                                          | Yes | Yes | Yes     | Yes         | Yes | Take effect |
| X16      | Lack of Construction Materials                                     | Yes | Yes | Yes     | Yes         | Yes | Take effect |
| X17      | Poor Material Quality                                              | Yes | Yes | Yes     | Yes         | Yes | Take effect |
| X18      | Limited Availability of Materials in the Market                    | Yes | Yes | Yes     | Yes         | Yes | Take effect |

|          | Variabel                                                                              |     | Exp | ert Res | Explanation |     |             |
|----------|---------------------------------------------------------------------------------------|-----|-----|---------|-------------|-----|-------------|
|          | Variabei                                                                              | PL1 | PL2 | PL3     | PL4         | PL5 | Expranation |
| Tool Fac | ctor (Machine)                                                                        |     |     |         |             |     |             |
| X19      | Delay in delivery of tools to the project site                                        | Yes | Yes | Yes     | Yes         | Yes | Take effect |
| X20      | Low equipment productivity                                                            | Yes | Yes | Yes     | Yes         | Yes | Take effect |
| X21      | Difficult access for heavy equipment to be used in project implementation             | Yes | Yes | Yes     | No          | Yes | Take effect |
| X22      | Lack of required number/capacity of heavy equipment                                   | Yes | Yes | Yes     | Yes         | Yes | Take effect |
| X23      | Heavy equipment damage                                                                | Yes | Yes | No      | No          | Yes | Take effect |
| X24      | Inefficient use of equipment                                                          | Yes | Yes | No      | Yes         | Yes | Take effect |
| Cost Fac | ctor (Money)                                                                          |     |     |         |             |     |             |
| X25      | There is a delay in payment to subcontractors through the main<br>contractor          | Yes | Yes | No      | No          | Yes | Take effect |
| X26      | Funding problems from head office (Contractor)                                        | Yes | Yes | Yes     | Yes         | Yes | Take effect |
| X27      | Inflation affecting material prices                                                   | Yes | No  | No      | No          | Yes | No effect   |
| X28      | Late payment term by owner                                                            | Yes | Yes | Yes     | Yes         | Yes | Take effect |
| X29      | Additional costs for mobilizing & demobilizing new tools due to wrong work methods    | Yes | Yes | Yes     | Yes         | Yes | Take effect |
| Other Fa | actors                                                                                |     |     |         |             |     |             |
| X30      | Lack of communication and coordination between the parties<br>involved in the project | Yes | Yes | No      | Yes         | Yes | Take effect |
| X31      | Lack of supervision over subcontractors and suppliers                                 | Yes | Yes | Yes     | Yes         | Yes | Take effect |
| X32      | There are public complaints due to construction implementation                        | Yes | No  | Yes     | No          | Yes | Take effect |
| X33      | Delay caused by weather                                                               | Yes | Yes | No      | Yes         | No  | Take effect |
| X34      | The occurrence of unexpected things (Natural Disasters, Fires, etc.)                  | Yes | Yes | Yes     | Yes         | Yes | Take effect |
| X35      | The outbreak of the corona virus (Covid 19)                                           | Yes | Yes | Yes     | Yes         | Yes | Take effect |

From the results of the questionnaire recapitulation phase I (Initial Expert Validation), there is one variable that, according to the expert, does not affect the risk of time delays in the Pulogadung-East Jakarta PIK Flats Construction Project. Variables that the experts did not approve were omitted and not included in the second data collection phase [8].

## 3.2 Standard Value and The Ratio Value

The second stage of data collection is carried out after adjusting to the first stage of data collection (initial expert validation). The second stage of the questionnaire (Respondent Questionnaire) aims to obtain data which will later be processed and analyzed to get the factors that cause the risk of time delays and the most dominant factor that causes the risk of time delays in the work of the Pulogadung-East Jakarta PIK Flats Construction Project.

The second phase of data collection (Respondent Questionnaire) was carried out by distributing questionnaires to 30 respondents directly related to the Pulogadung-East Jakarta PIK Flas Construction Project. Where the tube one one0 resoneaavaavaailaavailableleleablents is taken from hg formula, which s as follows:

$$n = \left(\frac{N}{1 + N(e^2)}\right)$$

Where:

n = Sample Size

N = Population size in the Pulogadung-East Jakarta PIK flat construction project

e = Percentage of inaccuracy or sample error rate (using 5% or 0.05)

$$n = \left(\frac{32}{1+32(0,05^2)}\right) = 29,63 = 30$$
 People

From the above calculation, it can be obtained that the number of samples taken is 30 people. And here are the results of the second stage of data collection (respondent questionnaire), namely:

| Variabel    | How Often It Occurs |   |    |    | How big is the impact |   |   |    |    |   |  |
|-------------|---------------------|---|----|----|-----------------------|---|---|----|----|---|--|
| variabei    | 1                   | 2 | 3  | 4  | 5                     | 1 | 2 | 3  | 4  | 5 |  |
| Labor Facto | Labor Factor        |   |    |    |                       |   |   |    |    |   |  |
| X1          | 5                   | 4 | 11 | 8  | 2                     | 4 | 1 | 8  | 12 | 5 |  |
| X2          | 2                   | 6 | 12 | 6  | 4                     | 3 | 2 | 7  | 13 | 5 |  |
| X3          | 3                   | 6 | 13 | 6  | 2                     | 1 | 4 | 11 | 11 | 3 |  |
| X4          | 2                   | 2 | 14 | 7  | 5                     | - | 1 | 13 | 8  | 8 |  |
| X5          | 1                   | 3 | 11 | 11 | 4                     |   | 1 | 8  | 15 | 6 |  |
| X6          | 2                   | 3 | 10 | 9  | 6                     | 1 | 4 | 6  | 12 | 7 |  |

Table 2. Results of the Second Stage of Data Collection

| Variabel    |            | How ( | Often It ( | Occurs |   | How big is the impact |   |    |    |    |  |
|-------------|------------|-------|------------|--------|---|-----------------------|---|----|----|----|--|
| variabei    | 1          | 2     | 3          | 4      | 5 | 1                     | 2 | 3  | 4  | 5  |  |
| Job Docum   | nent Facto | r     |            |        |   |                       |   |    |    |    |  |
| X7          | 1          | 1     | 11         | 11     | 6 |                       | 2 | 10 | 12 | 6  |  |
| X8          | -          | 3     | 10         | 15     | 2 | -                     | 2 | 10 | 14 | 4  |  |
| X9          | 1          | 6     | 14         | 8      | 1 |                       | 5 | 13 | 10 | 2  |  |
| X10         | 1          | 2     | 14         | 10     | 3 |                       | 1 | 11 | 13 | 5  |  |
| X11         | -          | 2     | 13         | 14     | 1 |                       | 4 | 8  | 15 | 3  |  |
| X12         | 2          | 9     | 11         | 6      | 2 | 2                     | 7 | 8  | 10 | 3  |  |
| Material Fa | actor      |       | -          | -      | - |                       | - |    | -  |    |  |
| X13         |            | 6     | 12         | 5      | 7 | L                     | L | 10 | 11 | 9  |  |
| X14         | 5          | 7     | 6          | 9      | 3 | 1                     | 6 | 7  | 10 | 6  |  |
| X15         | 1          | 8     | 11         | 10     |   |                       | 3 | 8  | 15 | 4  |  |
| X16         | 1          | 7     | 8          | 11     | 3 | L -                   | 1 | 6  | 18 | 5  |  |
| X17         | 2          | 8     | 10         | 7      | 3 | 1                     | 2 | 7  | 15 | 5  |  |
| X18         | 4          | 9     | 8          | 7      | 2 | 2                     | 2 | 10 | 14 | 2  |  |
| Tool Facto  | r (Machin  | le)   |            |        |   |                       |   |    |    |    |  |
| X19         | 1          | 9     | 12         | 6      | 2 | <u> </u>              | 4 | 8  | 12 | 6  |  |
| X20         | 2          | 6     | 13         | 8      | 1 | 1                     | 2 | 12 | 11 | 4  |  |
| X21         | 4          | 9     | 11         | 3      | 3 | 2                     | 2 | 11 | 11 | 4  |  |
| X22         | 3          | 5     | 14         | 6      | 2 | 1                     | 4 | 7  | 13 | 5  |  |
| X23         |            | 13    | 9          | 5      | 3 | <u> </u>              | 3 | 6  | 12 | 9  |  |
| X24         | 4          | 8     | 13         | 5      | - | 2                     | 3 | 12 | 10 | 3  |  |
| Cost Facto  | r (Money   |       | F          | T      | r | T                     | r | T  | r  |    |  |
| <u>X25</u>  |            | 3     | 17         | 7      | 3 | L- <u>-</u>           | 2 | 12 | 11 | 5  |  |
| X26         |            | 5     | 16         | 6      | 3 | L                     | 1 | 10 | 12 | 77 |  |
| X28         |            | 3     | 13         | 8      | 6 | 1                     | 2 | 8  | 9  | 10 |  |
| X29         | 4          | 13    | 12         | -      | 1 | 4                     | 4 | 9  | 8  | 5  |  |
| Other Fact  | ors        | 1     | 1          | 1      | Γ | T                     |   | T  | r  |    |  |
| <u>X30</u>  |            | 7     | 14         | 7      | 2 | L                     | 3 | 10 | 12 | 5  |  |
| X31         | 2          | 4     | 17         | 6      | 1 | 1                     | 2 | 15 | 8  | 4  |  |
| X32         | 4          | 10    | 14         | 2      |   | 4                     | 8 | 11 | 6  | 1  |  |
| X33         | 1          | 8     | 13         | 6      | 2 | 3                     | 2 | 13 | 10 | 2  |  |
| X34         | 10         | 9     | 5          | 3      | 3 | 7                     | 2 | 5  | 10 | 6  |  |
| X35         | 3          | 6     | 7          | 6      | 8 | 1                     | - | 6  | 9  | 14 |  |

#### 3.3 Data Analysis

Data analysis was conducted to test whether the results of the questionnaires that had been collected were valid and correct data. The data testing carried out in this research is a validity test, reliability test, correlation analysis, and factor analysis performed using IBM SPSS version 26 software tools. Then the risk analysis was carried out by two methods: using a probability impact matrix with MS. Excel software and multiple linear regression analysis with IBM SPSS version 26 software.

## 3.3.1 Validity Test

A validity test was conducted to measure the accuracy of the instruments used in a study. If the device used to obtain data is valid, then the device can be used to measure what should be measured. The validity test looks at the corrected item's total correlation value. Whether the data is valid or not can be seen by comparing the fixed item-total correlation value from the data with the product-moment r value table, which is as follows:

a. If r count is positive or r count > r table, then the variable is valid

b. If the r count is negative or the r count < r table, the variable is invalid.

The following are the results of the validity test, namely:

| Table 3. Validity Test Results |  |
|--------------------------------|--|
|--------------------------------|--|

| Variabel | Fre     | equency Vali | idity Test  | Impact Validity Test |         |             |  |  |  |
|----------|---------|--------------|-------------|----------------------|---------|-------------|--|--|--|
|          | r Count | r Table      | Explanation | r Count              | r Table | Explanation |  |  |  |
| X1       | 0,530   | 0,374        | Valid       | 0,667                | 0,374   | Valid       |  |  |  |
| X2       | 0,510   | 0,374        | Valid       | 0,686                | 0,374   | Valid       |  |  |  |
| X3       | 0,477   | 0,374        | Valid       | 0,438                | 0,374   | Valid       |  |  |  |
| X4       | 0,641   | 0,374        | Valid       | 0,674                | 0,374   | Valid       |  |  |  |
| X5       | 0,517   | 0,374        | Valid       | 0,579                | 0,374   | Valid       |  |  |  |

| Variabel | Fr      | equency Vali | idity Test  | Impact Validity Test |         |             |  |  |
|----------|---------|--------------|-------------|----------------------|---------|-------------|--|--|
| Vallabel | r Count | r Table      | Explanation | r Count              | r Table | Explanation |  |  |
| X6       | 0,522   | 0,374        | Valid       | 0,462                | 0,374   | Valid       |  |  |
| X7       | 0,487   | 0,374        | Valid       | 0,483                | 0,374   | Valid       |  |  |
| X8       | 0,551   | 0,374        | Valid       | 0,512                | 0,374   | Valid       |  |  |
| X9       | 0,533   | 0,374        | Valid       | 0,672                | 0,374   | Valid       |  |  |
| X10      | 0,523   | 0,374        | Valid       | 0,623                | 0,374   | Valid       |  |  |
| X11      | 0,318   | 0,374        | invalid     | 0,650                | 0,374   | Valid       |  |  |
| X12      | 0,565   | 0,374        | Valid       | 0,655                | 0,374   | Valid       |  |  |
| X13      | 0,769   | 0,374        | Valid       | 0,676                | 0,374   | Valid       |  |  |
| X14      | 0,697   | 0,374        | Valid       | 0,816                | 0,374   | Valid       |  |  |
| X15      | 0,788   | 0,374        | Valid       | 0,794                | 0,374   | Valid       |  |  |
| X16      | 0,724   | 0,374        | Valid       | 0,653                | 0,374   | Valid       |  |  |
| X17      | 0,576   | 0,374        | Valid       | 0,661                | 0,374   | Valid       |  |  |
| X18      | 0,757   | 0,374        | Valid       | 0,656                | 0,374   | Valid       |  |  |
| X19      | 0,672   | 0,374        | Valid       | 0,720                | 0,374   | Valid       |  |  |
| X20      | 0,663   | 0,374        | Valid       | 0,704                | 0,374   | Valid       |  |  |
| X21      | 0,443   | 0,374        | Valid       | 0,488                | 0,374   | Valid       |  |  |
| X22      | 0,673   | 0,374        | Valid       | 0,742                | 0,374   | Valid       |  |  |
| X23      | 0,643   | 0,374        | Valid       | 0,675                | 0,374   | Valid       |  |  |
| X24      | 0,675   | 0,374        | Valid       | 0,857                | 0,374   | Valid       |  |  |
| X25      | 0,403   | 0,374        | Valid       | 0,419                | 0,374   | Valid       |  |  |
| X26      | 0,431   | 0,374        | Valid       | 0,490                | 0,374   | Valid       |  |  |
| X28      | 0,374   | 0,374        | Valid       | 0,477                | 0,374   | Valid       |  |  |
| X29      | 0,434   | 0,374        | Valid       | 0,737                | 0,374   | Valid       |  |  |
| X30      | 0,615   | 0,374        | Valid       | 0,642                | 0,374   | Valid       |  |  |
| X31      | 0,457   | 0,374        | Valid       | 0,499                | 0,374   | Valid       |  |  |
| X32      | 0,499   | 0,374        | Valid       | 0,587                | 0,374   | Valid       |  |  |
| X33      | 0,507   | 0,374        | Valid       | 0,531                | 0,374   | Valid       |  |  |
| X34      | 0,394   | 0,374        | Valid       | 0,466                | 0,374   | Valid       |  |  |
| X35      | 0,458   | 0,374        | Valid       | 0,375                | 0,374   | Valid       |  |  |

From the results of the validity test carried out, of the 34 variables tested, there are 33 variables whose r count > r table and one variable that is r count < r table. This one variable is then eliminated and not included in further data analysis.

#### 3.3.2 Reliability Test

The reliability test was measured using the Cronbach's Alpha method, provided that the Cronbach's Alpha value was more significant than the r obtained from the validity test. This means that if the Cronbach's Alpha value obtained from the calculations with the IBM SPSS ver. 26 software tool is more significant than the r obtained from the validity test, it can be concluded that the questionnaire is reliable. Here are the results of the reliability test:

| Table 4. Reliability Test Results |            |                  |            |  |  |  |  |  |
|-----------------------------------|------------|------------------|------------|--|--|--|--|--|
| Frequen                           | cy         | Impact           |            |  |  |  |  |  |
| Cronbach's Alpha                  | N of Items | Cronbach's Alpha | N of Items |  |  |  |  |  |
| 0,930                             | 33         | 0,947            | 33         |  |  |  |  |  |

From the reliability test results above, the Cronbach's Alpha value obtained from the IBM SPSS version 26 software tool is for a frequency of 0,930, while for the impact of 0,947, where the two values are more significant than the value of the r table in the validity test, which is 0,374 so that the data obtained can be said to be reliable.

## 3.3.3 Risk Analysis with Probability Impact Matrix

The risk rating analysis was carried out using the results of the second stage of data collection (Respondent Questionnaire), which had previously been tested for validity and reliability tests. The risk rating analysis is carried out by multiplying the average impact value by the average opportunity value. To calculate the average value of the frequency and the average value of the impact using a weighting taken from the Likert scale, which is as follows:

| Frequency<br>Criteria | 1           | 2      | 3         | 4     | 5          |
|-----------------------|-------------|--------|-----------|-------|------------|
|                       | Very rarely | Rarely | Sometimes | Often | Very often |
| Weighting             | 0,1         | 0,3    | 0,5       | 0,7   | 0,9        |

 Table 5. Frequency Scale Table

| Impact<br>Criteria | 1          | 2     | 3      | 4      | 5          |
|--------------------|------------|-------|--------|--------|------------|
|                    | Very Minor | Minor | Medium | M ajor | Very Major |
| Weighting          | 0,05       | 0,1   | 0,2    | 0,4    | 0,8        |

Next, a risk rating will be given based on multiplying the average opportunity value and the average impact value by matching the risk value obtained from the calculation with the probability impact matrix table. The following is an image of the probability impact matrix table:

**Table 7.** Probability Impact Matrix Table

|               |          | 2         | 1            |          |           |
|---------------|----------|-----------|--------------|----------|-----------|
| Probability   | R        | isk Score | - Probabilit | y x Impa | ct        |
| 0.9           | 0.05     | 0.09      | 0.18         | 0.36     | 0.72      |
| 0.7           | 0.04     | 0.07      | 0.14         | 0.28     | 0.56      |
| 0.5           | 0.03     | 0.05      | 0.10         | 0.20     | 0.40      |
| 0.3           | 0.02     | 0.03      | 0.06         | 0.12     | 0.24      |
| 0.1           | 0.01     | 0.01      | 0.02         | 0.04     | 0.08      |
|               | 0.05     | 0.10      | 0.20         | 0.40     | 0.80      |
|               | Very low | Low       | Medium       | High     | Very High |
|               |          |           | Impact       |          |           |
|               |          |           |              |          |           |
| Explanation : |          |           |              |          |           |
|               | Low      |           | Medium       |          | High      |

The results of the calculation of risk analysis with a probability matrix table can be seen in the following table:

| Variabel | Frequency<br>(I) | Impact (P) | Risk Value<br>(IxP) | Explanation | Variabel | Frequency<br>(I) | Impact (P) | Risk Value<br>(IxP) | Explanation |
|----------|------------------|------------|---------------------|-------------|----------|------------------|------------|---------------------|-------------|
| X1       | 0,49             | 0,36       | 0,17                | Medium      | X19      | 0,49             | 0,39       | 0,19                | Medium      |
| X2       | 0,53             | 0,37       | 0,19                | Medium      | X20      | 0,50             | 0,34       | 0,17                | Medium      |
| X3       | 0,49             | 0,32       | 0,15                | Medium      | X21      | 0,45             |            |                     | Medium      |
| X4       | 0,57             | 0,32       | 0,24                | High        | X22      | 0,49             | 0,37       | 0,18                | Medium      |
|          |                  | <i></i> _  |                     | High        | X23      | 0,49             | 0,45       | 0,22                | High        |
| X5       | 0,59             | 0,42       | 0,25                |             | X24      | 0,43             | 0,31       | 0,13                | Medium      |
| X6       | 0,59             | 0,40       | 0,24                | High        | X25      | 0,57             | 0,37       | 0,21                | High        |
| X7       | 0,63             | 0,39       | 0,25                | High        | X26      | 0,55             | 0,42       | 0,23                | High        |
| X8       | 0,61             | 0,37       | 0,22                | High        | X28      | 0,61             | 0,45       | 0,27                | High        |
| X9       | 0,51             | 0,29       | 0,15                | Medium      | X29      | 0,37             | 0,32       | 0,12                | Medium      |
| X10      | 0,58             | 0,38       | 0,22                | High        | X30      | 0,53             | 0,37       | 0,19                | Medium      |
| X12      | 0,48             | 0,29       | 0,14                | Medium      | X31      | 0,50             | 0,32       | 0,16                | Medium      |
| X13      | 0,59             | 0,45       | 0,27                | High        | X32      | 0,39             | 0,21       | 0,08                | Medium      |
| X14      | 0,49             | 0,36       | 0,18                | Medium      | X33      | 0,50             | 0,29       | 0,14                | Medium      |
| X15      | 0,50             | 0,37       | 0,19                | Medium      | X34      | 0,37             | 0,35       | 0,13                | Medium      |
| X16      | 0,55             | 0,42       | 0,23                | High        | X35      | 0,57             | 0,54       | 0,30                | High        |
| X17      | 0,51             | 0,39       | 0,20                | Medium      |          |                  |            |                     |             |
| X18      | 0,46             | 0,32       | 0,15                | Medium      |          |                  |            |                     |             |

Table 8. Probability Impact Matrix Table

From the calculation results above, it is known that 13 variables are included in the high category because the risk value is in the range of 0,2-0,72.

#### **3.3.4 Correlation Analysis**

The correlation analysis used Spearman correlation because the data studied were nonparametric with ordinal scale type. Spearman correlation analysis determines the relationship or relationship between two variables measured at least in ordinal. Refer to the correlation coefficient value column (r count) compared with the r table value in the correlation test. For statistical decision-making, it is a variable that has a correlation coefficient > 0.374. The following are the results of the correlation analysis, which are as follows:

| Table 9. Correlation Analysis Results |                            |                     |         |                                      |            |                            |                     |         |                  |
|---------------------------------------|----------------------------|---------------------|---------|--------------------------------------|------------|----------------------------|---------------------|---------|------------------|
|                                       |                            | Frequen             | cy      |                                      |            |                            | Impact              |         |                  |
| Variabel                              | Correlation<br>Coefficient | Sig. (2-<br>tailed) | r Table | Explanation                          | Variabel   | Correlation<br>Coefficient | Sig. (2-<br>tailed) | r Table | Explanation      |
| X1                                    | 0,639**                    | 0,000               | 0,374   | Have Correlation                     | X1         | 0,641**                    | 0,000               | 0,374   | Have Correlation |
| X2                                    | 0,548**                    | 0,002               | 0,374   | Have Correlation                     | X2         | 0,657**                    | 0,000               | 0,374   | Have Correlation |
| X3                                    | 0,498**                    | 0,005               | 0,374   | Have Correlation                     | X3         | 0,399*                     | 0,029               | 0,374   | Have Correlation |
| X4                                    | 0,642**                    | 0,000               | 0,374   | Have Correlation                     | X4         | 0,527**                    | 0,003               | 0,374   | Have Correlation |
| X5                                    | 0,445*                     | 0,014               | 0,374   | Have Correlation                     | X5         | 0,615**                    | 0,000               | 0,374   | Have Correlation |
| X6                                    | 0,443*                     | 0,014               | 0,374   | Have Correlation                     | X6         | 0,378*                     | 0,039               | 0,374   | Have Correlation |
| X7                                    | 0,340                      | 0,066               | 0,374   | No Correlation                       | X7         | 0,486**                    | 0,006               | 0,374   | Have Correlation |
| X8                                    | 0,273                      | 0,144               | 0,374   | No Correlation                       | X8         | 0,506**                    | 0,004               | 0,374   | Have Correlation |
| X9                                    | 0,305                      | 0,101               | 0,374   | No Correlation                       | X9         | 0,636**                    | 0,000               | 0,374   | Have Correlation |
| X10                                   | 0,349                      | 0,058               | 0,374   | No Correlation                       | X10        | 0,644**                    | 0,000               | 0,374   | Have Correlation |
| X12                                   | 0,404*                     | 0,027               | 0,374   | Have Correlation                     | X12        | 0,669**                    | 0,000               | 0,374   | Have Correlation |
| X13                                   | 0,708**                    | 0,000               | 0,374   | Have Correlation                     | X13        | 0,594**                    | 0,001               | 0,374   | Have Correlation |
| X14                                   | 0,633**                    | 0,000               | 0,374   | Have Correlation                     | X14        | 0,734**                    | 0,000               | 0,374   | Have Correlation |
| X15                                   | 0,766**                    | 0,000               | 0,374   | Have Correlation                     | X15        | 0,710**                    | 0,000               | 0,374   | Have Correlation |
| X16                                   | 0,685**                    | 0,000               | 0,374   | Have Correlation                     | X16        | 0,428*                     | 0,018               | 0,374   | Have Correlation |
| X17                                   | 0,501**                    | 0,005               | 0,374   | Have Correlation                     | X17        | 0,453*                     | 0,012               | 0,374   | Have Correlation |
| X18                                   | 0,662**                    | 0,000               | 0,374   | Have Correlation                     | X18        | 0,597**                    | 0,000               | 0,374   | Have Correlation |
| X19                                   | 0,474**                    | 0,008               | 0,374   | Have Correlation                     | X19        | 0,531**                    | 0,003               | 0,374   | Have Correlation |
| X20                                   | 0,536**                    | 0,002               | 0,374   | Have Correlation                     | X20        | 0,466**                    | 0,010               | 0,374   | Have Correlation |
| X21                                   | 0,317                      | 0,088               | 0,374   | No Correlation                       | X21        | 0,272                      | 0,146               | 0,374   | No Correlation   |
| X22                                   | 0,468**                    | 0,009               | 0,374   | Have Correlation                     | X22        | 0,650**                    | 0,000               | 0,374   | Have Correlation |
| X23                                   | 0,517**                    | 0,003               | 0,374   | Have Correlation                     | X23        | 0,489**                    | 0,006               | 0,374   | Have Correlation |
| X24<br>X25                            | 0,728**<br>0,475**         | 0,000               | 0,374   | Have Correlation<br>Have Correlation | X24<br>X25 | 0,768**                    | 0,000               | 0,374   | Have Correlation |
| X25<br>X26                            | 0,475**                    | 0,008               | 0,374   | Have Correlation                     | X26        | 0,337                      | 0,089               | 0,374   | Have Correlation |
| X28                                   | 0,430                      | 0,010               | 0,374   | No Correlation                       | X28        | 0,429                      | 0,018               | 0,374   | No Correlation   |
| X29                                   | 0,387*                     | 0,035               | 0,374   | Have Correlation                     | X29        | 0,594**                    | 0,000               | 0,374   | Have Correlation |
| X30                                   | 0,478**                    | 0,008               | 0,374   | Have Correlation                     | X30        | 0,623**                    | 0,001               | 0,374   | Have Correlation |
| X31                                   | 0,326                      | 0.079               | 0,374   | No Correlation                       | X31        | 0,452*                     | 0,012               | 0,374   | No Correlation   |
| X32                                   | 0,574**                    | 0,001               | 0,374   | Have Correlation                     | X32        | 0,572**                    | 0,001               | 0,374   | Have Correlation |
| X33                                   | 0,512**                    | 0,004               | 0,374   | Have Correlation                     | X33        | 0,547**                    | 0,002               | 0,374   | Have Correlation |
| X34                                   | 0,333                      | 0,072               | 0,374   | No Correlation                       | X34        | 0,484**                    | 0,007               | 0,374   | Have Correlation |
| X35                                   | 0,282                      | 0,130               | 0,374   | No Correlation                       | X35        | 0,19                       | 0,315               | 0,374   | No Correlation   |

Table 9. Correlation Analysis Results

Based on the results of the correlation analysis with the significance of the relationship, it is known that from 33 variables, 23 variables correlate.

#### 3.3.5 Factor Analysis

Factor analysis is intended to find the main factors of time performance that affect project implementation time, which can be taken from the weight of the most significant contribution of the other elements.

## 3.3.5.1 Assessing The Eligibility of Variables

KMO test and Bartlett's Test are used for initial tests on whether the existing data can be broken down into several factors; the results of the analysis can be seen in the following table:

| KMO and Bartlett's                                  | lest Frequer                                   | icy   | KMO and Bartlett                                 | s Test impac          | τ       |
|-----------------------------------------------------|------------------------------------------------|-------|--------------------------------------------------|-----------------------|---------|
| Kaiser-Meyer-Olkin Measure<br>of Sampling Adequacy. |                                                | 0,613 | Kaiser-Meyer-Olkin Measure of Sampling Adequacy. |                       | 0,580   |
| Bartlett's Test of Sphericity                       | ett's Test of Sphericity Approx.<br>Chi-Square |       | Bartlett's Test of Sphericity                    | Approx.<br>Chi-Square | 633,986 |
|                                                     | df                                             | 253   |                                                  | df                    | 253     |
|                                                     | Sig.                                           | 0     |                                                  | Sig.                  | 0       |

 Table 10. Results of KMO and Bartlett's Test

 D and Bartlett's Test Frequency
 KMO and Bartlett's Test It

The table above shows that the results show that the Kaiser-Meyer-Olkin Measure of Sampling Adequacy value is 0,613 for the frequency scale and 0,580 for the impact scale, which means more than 0,5 then. The correlation is quite significant between variables. Furthermore, the Anti-Image Matrices Results table shows the correlation between independent variables. The value to be considered is the MSA (Measure of Sampling Adequacy), ranging from 0 to 1, with the criteria that if the MSA value is <0,5, then the variable cannot be predicted and cannot be analyzed further, while if the MSA value is > 0.5, the variable is still predictable and can be analyzed further. The following are the output results of Anti-Image Matrices, which are as follows:

|          | Frequ         | iency              | Impact   |              |                    |  |  |
|----------|---------------|--------------------|----------|--------------|--------------------|--|--|
| Variabel | MS A<br>Value | Explanation        | Variabel | MSA<br>Value | Explanation        |  |  |
| X1       | 0,740         | Can Be Analyzed    | X1       | 0,563        | Can Be Analyzed    |  |  |
| X2       | 0,729         | Can Be Analyzed    | X2       | 0,630        | Can Be Analyzed    |  |  |
| X3       | 0,572         | Can Be Analyzed    | X3       | 0,531        | Can Be Analyzed    |  |  |
| X4       | 0,689         | Can Be Analyzed    | X4       | 0,771        | Can Be Analyzed    |  |  |
| X5       | 0,592         | Can Be Analyzed    | X5       | 0,449        | Cannot be Analyzed |  |  |
| X6       | 0,667         | Can Be Analyzed    | X6       | 0,358        | Cannot be Analyzed |  |  |
| X12      | 0,479         | Cannot be Analyzed | X12      | 0,501        | Can Be Analyzed    |  |  |
| X13      | 0,698         | Can Be Analyzed    | X13      | 0,652        | Can Be Analyzed    |  |  |
| X14      | 0,691         | Can Be Analyzed    | X14      | 0,706        | Can Be Analyzed    |  |  |
| X15      | 0,768         | Can Be Analyzed    | X15      | 0,526        | Can Be Analyzed    |  |  |
| X16      | 0,719         | Can Be Analyzed    | X16      | 0,603        | Can Be Analyzed    |  |  |
| X17      | 0,468         | Cannot be Analyzed | X17      | 0,484        | Cannot be Analyzed |  |  |
| X18      | 0,654         | Can Be Analyzed    | X18      | 0,714        | Can Be Analyzed    |  |  |
| X19      | 0,660         | Can Be Analyzed    | X19      | 0,842        | Can Be Analyzed    |  |  |
| X20      | 0,581         | Can Be Analyzed    | X20      | 0,690        | Can Be Analyzed    |  |  |
| X22      | 0,768         | Can Be Analyzed    | X22      | 0,631        | Can Be Analyzed    |  |  |
| X23      | 0,556         | Can Be Analyzed    | X23      | 0,515        | Can Be Analyzed    |  |  |
| X24      | 0,600         | Can Be Analyzed    | X24      | 0,682        | Can Be Analyzed    |  |  |
| X26      | 0,335         | Cannot be Analyzed | X26      | 0,648        | Can Be Analyzed    |  |  |
| X29      | 0,585         | Can Be Analyzed    | X29      | 0,752        | Can Be Analyzed    |  |  |
| X30      | 0,448         | Cannot be Analyzed | X30      | 0,545        | Can Be Analyzed    |  |  |
| X32      | 0,527         | Can Be Analyzed    | X32      | 0,416        | Cannot be Analyzed |  |  |
| X33      | 0,451         | Cannot be Analyzed | X33      | 0,311        | Cannot be Analyzed |  |  |

 Table 11. Anti-Image Matrices output results

From the results of Anti-Image Matrices, there are eight variables whose MSA value is <0,5, so these variables cannot be predicted and cannot be analyzed further. While there are 15 variables whose MSA value is >0,5, the variables are still predictable and can be investigated further.

#### **3.3.6 Factor Analysis**

Multiple linear regression analysis aims to determine whether or not there is an effect of two or more independent variables (X) on the dependent variable (Y). It is also a set of statistical procedures to explain the linear relationship between two or more independent variables (X1, X2,...,Xn) and the dependent variable (Y).

#### **3.3.6.1** Coefficient of Determination Test (R<sup>2</sup>-Test)

In the measurement, the coefficient of determination has a range of 0% - 100%. If the coefficient of determination is close to 100%, it means that the independent variable (X) in the study has a significant influence on the dependent variable (Y). The results obtained from the determination test can be seen in the table below:

| Model                                         | R                  | R S quare     | Adjusted R<br>S quare | Std. Error of the Estimate |  |
|-----------------------------------------------|--------------------|---------------|-----------------------|----------------------------|--|
| 1                                             | 0,807 <sup>a</sup> | 0,652         | 0,639                 | 0,408                      |  |
| 2                                             | 0,899 <sup>b</sup> | 0,807         | 0,793                 | 0,309                      |  |
| 3                                             | 0,922 <sup>c</sup> | 0,85          | 0,832                 | 0,278                      |  |
| 4                                             | 0,940 <sup>d</sup> | 0,884         | 0,866                 | 0,249                      |  |
| 5                                             | 0,951 <sup>e</sup> | 0,904         | 0,884                 | 0,231                      |  |
| 6                                             | 0,950 <sup>f</sup> | 0,903         | 0,888                 | 0,227                      |  |
| a. Predict                                    | ors: (Constar      | nt), X14      |                       |                            |  |
| b. Predict                                    | ors: (Constar      | nt), X14, X20 | 0                     |                            |  |
| c. Predict                                    | ors: (Constar      | nt), X14, X20 | ), X15                |                            |  |
| d. Predictors: (Constant), X14, X20, X15, X18 |                    |               |                       |                            |  |
| e. Predict                                    | ors: (Constar      | nt), X14, X20 | ), X15, X18,          | X13                        |  |
| f. Predict                                    | tors: (Consta      | nt), X20, X1  | 5. X18. X13           |                            |  |

| Table 12. Results of the Coefficient of Determination |  |  |  |  |  |
|-------------------------------------------------------|--|--|--|--|--|
| Model Cummons                                         |  |  |  |  |  |

From the table above, the results of the coefficient of determination test show that there are six regression models produced; however, the best regression model is regression model 5, which consists of 5 variables, because it has an R2 value that is greater than other regression models, which is 0.904, which means that the variability of the dependent variable which the variability of the independent variable can explain is 90.4%.

#### **3.3.6.2** Test (F-Test)

A simultaneous test off-test is carried out to know whether the independent variable (X) simultaneously (together) affects the dependent variable (Y), namely the risk of time delays that occur. The results obtained from the Simultaneous test can be seen in the table below:

| Model |            | S um of<br>S quares | df | Mean<br>S quare | F      | Sig.              |
|-------|------------|---------------------|----|-----------------|--------|-------------------|
| 1     | Regression | 8,712               | 1  | 8,712           | 52,404 | .000 <sup>b</sup> |
|       | Residual   | 4,655               | 28 | 0,166           |        |                   |
|       | Total      | 13,367              | 29 |                 |        |                   |
| 2     | Regression | 10,793              | 2  | 5,397           | 56,615 | .000 <sup>c</sup> |
|       | Residual   | 2,574               | 27 | 0,095           |        |                   |
|       | Total      | 13,367              | 29 |                 |        |                   |
| 3     | Regression | 11,357              | 3  | 3,786           | 48,964 | .000 <sup>d</sup> |
|       | Residual   | 2,01                | 26 | 0,077           |        |                   |
|       | Total      | 13,367              | 29 |                 |        |                   |
| 4     | Regression | 11,82               | 4  | 2,955           | 47,747 | .000 <sup>e</sup> |
|       | Residual   | 1,547               | 25 | 0,062           |        |                   |
|       | Total      | 13,367              | 29 |                 |        |                   |
| 5     | Regression | 12,084              | 5  | 2,417           | 45,229 | $.000^{f}$        |
|       | Residual   | 1,282               | 24 | 0,053           |        |                   |
|       | Total      | 13,367              | 29 |                 |        |                   |
| 6     | Regression | 12,074              | 4  | 3,018           | 58,371 | .000 <sup>g</sup> |
|       | Residual   | 1,293               | 25 | 0,052           |        |                   |
|       | Total      | 13,367              | 29 |                 |        |                   |

#### Table 13. Simultaneous Test Results

a. Dependent Variable: Y

b. Predictors: (Constant), X14

c. Predictors: (Constant), X14, X20

d. Predictors: (Constant), X14, X20, X15
e. Predictors: (Constant), X14, X20, X15, X18

Fredictors: (Constant), X14, X20, X15, X18
 Predictors: (Constant), X14, X20, X15, X18, X13

g. Predictors: (Constant), X14, X20, X15, X18, X13

From the table above, the calculated F value obtained in regression model 5 is 45,229, and the F table value with a 95% confidence level obtained is 2,74. This indicates that F count > F table, the significance value is less than 0,05, which is 0,000, which means a significant influence. It can be concluded that the independent variables simultaneously affect the dependent variable.

#### 3.3.6.3 Partial Test (T-Test)

A partial test (T-test) is one of the research hypothesis tests that aims to determine whether the independent variable or independent variable (X) partially (alone) affects the delay. The results obtained from the partial test can be seen in the table below:

|       | Coefficients <sup>a</sup> |       |       |                              |       | ole 14. Par | tial Test | Results    |             | Coeffic | ients <sup>a</sup>           |                |       |
|-------|---------------------------|-------|-------|------------------------------|-------|-------------|-----------|------------|-------------|---------|------------------------------|----------------|-------|
| Model |                           |       |       | Standardized<br>Coefficients | t     | Sig.        | Model     |            |             |         | Standardized<br>Coefficients | t              | Sig.  |
|       |                           |       |       | Beta                         |       |             |           |            |             |         | Beta                         |                |       |
| 1     | (Constant)                | 1,895 | 0,243 |                              | 7,811 | 0,000       | 5         | (Constant) | 0,168       | 0,293   |                              | 0,573          | 0,572 |
|       | X14                       | 0,482 | 0,067 | 0,807                        | 7,239 | 0,000       |           | X14        | 0,038       | 0,086   | 0,063                        | 0,440          | 0,664 |
| 2     | (Constant)                | 1,154 | 0,243 |                              | 4,756 | 0,000       |           | X20        | 0,148       | 0,060   |                              | 2,464          | 0,021 |
|       | X14                       | 0,383 | 0,055 | 0,641                        | 6,996 | 0,000       |           | X15        | 0,328       | 0,075   |                              | 4,374          | 0,000 |
|       | X20                       | 0,310 | 0,066 | 0,428                        | 4,673 | 0,000       |           | X18        | 0,248       | 0,073   | 0,353                        | 3,403          | 0,002 |
| 3     | (Constant)                | 0,828 | 0,250 | ,                            | 3,316 | 0,003       |           | X13        | 0,178       | 0,080   | 0,212                        | 2,226          | 0,036 |
| 5     | X14                       | 0,294 | 0,059 |                              | 4,964 | 0,000       | 6         | (Constant) | 0,099       | 0,243   | 0.102                        | 0,406          | 0,688 |
|       | X20                       | 0,254 | 0,063 |                              | 4,021 | 0,000       |           | X20<br>X15 | 0,139       | 0,056   |                              | 2,500          | 0,019 |
|       | X15                       | 0,226 | 0,084 |                              | 2,700 |             |           | X15<br>X18 | 0,348 0,269 | 0,059   | 0,432                        | 5,877<br>5,149 | 0,000 |
| 4     | (Constant)                | 0,589 | 0,240 | ,                            | 2,458 | 0,021       |           | X13        | 0,209       |         |                              | 3,203          | 0,000 |
|       | X14                       | 0,155 | 0,073 |                              |       | 0,045       | L         | 115        | 0,199       | 0,002   | 0,237                        | 5,205          | 0,004 |
|       | X20                       | 0,196 | 0,060 |                              | 3,253 | 0,003       |           |            |             |         |                              |                |       |
|       | X15                       | 0,285 | 0,078 |                              |       | 0,001       |           |            |             |         |                              |                |       |
|       | X18                       | 0,208 | 0,076 | 0,296                        | 2,735 | 0,011       |           |            |             |         |                              |                |       |

In the table above, regression model 5 shows that four independent variables affect the dependent variable: the significance value < 0.05 or the calculated T value > T table, where the T table value = 2,06390. So it can be concluded that the variable Y (Risk of Time Delay Occurs) is influenced by the variable X15 (Material Order Timeliness), X18 (Limited Availability of Materials in the Market), and X20 (Low Equipment Productivity), dan X13 (Material Delivery Delay).

#### 3.4 Third Stage Data Collection

From the data analysis carried out on the results of the second stage of data collection, it was found that the factors that influence the risk of time delays in the work of the Pulogadung-East Jakarta PIK Flats Construction Project. There are four influential variables from multiple linear regression analysis, while 13 variables are included in the high-risk category from a risk-ranking study using the probability impact matrix table. Furthermore, the third stage of data collection is carried out, namely the validation of risk handling experts; this is done by distributing questionnaires to experts and conducting interviews with experts, which aims to ask for opinions from experts regarding whether or not the expert agrees with the results obtained from the second stage of data collection and asks for input from experts regarding the handling actions that need to be taken so that the risk of time delays that occur does not get more prominent or can be resolved. In this final stage, expert validation, if the expert agrees with the variable, it is given a value of 1, while if the expert does not decide, it is given a value of 0. The following is the date of the third stage of data collection:

|         | Variabel                                                                  |     |     | ert Res |     |     | Value | Fundamention |
|---------|---------------------------------------------------------------------------|-----|-----|---------|-----|-----|-------|--------------|
|         | variabei                                                                  | PL1 | PL2 | PL3     | PL4 | PL5 | value | Explanation  |
| Labor F | actor                                                                     |     | -   | -       | -   | -   |       |              |
| X4      | Low Work Productivity                                                     | 0   | 0   | 0       | 0   | 1   | 1     | Not Agree    |
| X5      | Lack of Coordination at Work                                              | 0   | 1   | 1       | 0   | 1   | 3     | Agree        |
| X6      | Workers Ignore Work Safety and Security                                   | 0   | 0   | 0       | 0   | 1   | 1     | Not Agree    |
| Job Doc | pument Factor                                                             |     | -   | -       | -   | -   |       |              |
| X7      | Design Change                                                             | 1   | 1   | 1       | 0   | 1   | 4     | Agree        |
| X8      | Changing Work Schedule                                                    | 0   | 0   | 0       | 1   | 1   | 2     | Not Agree    |
| X10     | Late Submission of Design Changes                                         | 0   | 0   | 0       | 1   | 0   | 1     | Not Agree    |
| Materia | l Factor                                                                  |     | -   | -       | -   | -   |       |              |
| X13     | Delay in Material Delivery                                                | 0   | 1   | 0       | 0   | 1   | 2     | Not Agree    |
| X15     | Material Order Timeliness                                                 | 0   | 1   | 1       | 0   | 1   | 3     | Agree        |
| X16     | Lack of Construction Materials                                            | 0   | 0   | 0       | 0   | 1   | 1     | Not Agree    |
| X18     | Limited Availability of Materials in the Market                           | 1   | 1   | 0       | 0   | 1   | 3     | Agree        |
| Tool Fa | ctor (Machine)                                                            |     |     |         |     |     |       |              |
| X20     | Low equipment productivity                                                | 0   | 1   | 0       | 0   | 1   | 2     | Not Agree    |
| X23     | Heavy equipment damage                                                    | 0   | 0   | 0       | 0   | 1   | 1     | Not Agree    |
| Cost Fa | ctor (Money)                                                              |     |     |         |     |     |       |              |
| X25     | There is a delay in payment to subcontractors through the main contractor | 1   | 0   | 0       | 1   | 0   | 2     | Not Agree    |
| X26     | Funding problems from head office (Contractor)                            | 1   | 0   | 0       | 1   | 0   | 2     | Not Agree    |
| X28     | Late payment term by owner                                                | 1   | 1   | 1       | 1   | 1   | 5     | Agree        |
| Other F | actors                                                                    |     |     |         |     |     |       |              |
| X35     | The outbreak of the corona virus (Covid 19)                               | 1   | 1   | 0       | 1   | 0   | 3     | Agree        |

Table 15. Results of Third Stage of Data Collection

From the table above, it can be seen that the expert agreed on 6 of the 16 variables proposed to the expert as factors that caused the risk of time delays in the work of the Pulogadung-East Jakarta PIK Flats Construction Project. Meanwhile, the dominant factor that causes the risk of time delays in the work of the Pulogadung Flats Project, East Jakarta, is the cost factor with the variable Late Payment of Term By Owner (X28) because it has the highest score of 5 and has been approved by experts.

Furthermore, the handling actions that need to be taken are described for the emergence of variables/factors that cause the risk of time delays so that the risk of time delays that occur does not increase or can be overcome, namely as follows:

|     | Variabel                                        | Expert     | Handling Action                                                                                                                                                                                                                                 |
|-----|-------------------------------------------------|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| VE  | Labof Condication of West                       | PL1<br>PL2 | Can be anticipated by coordinating the linkages between jobs appropriately.<br>Contractors (Maincont) must regularly hold coordination meetings with their sub-contractors to<br>avoid unloading during work.                                   |
| X5  | Lack of Coordination at Work                    | PL3        | Conducted internal work evaluation.                                                                                                                                                                                                             |
|     |                                                 | PL4        | Following the schedule, weekly, monthly targets, and checking for existing problems.                                                                                                                                                            |
|     |                                                 | PA1        | Good coordination will certainly reduce the risk of delays. Good communication is one way.                                                                                                                                                      |
|     |                                                 | PL1        | Design changes at the time of implementation may delay the implementation schedule. It is<br>advisable to do this before the work is carried out.                                                                                               |
|     |                                                 | PL2        | Design changes do exist but they are minor, the owner's approval makes it slow.                                                                                                                                                                 |
| X7  | Design Change                                   | PL3        | Created Shop Drawing and Design Review.                                                                                                                                                                                                         |
|     |                                                 | PL4        | It should be predictable from the start.                                                                                                                                                                                                        |
|     |                                                 | PA1        | Make changes early in the project and avoid changes when the project is already running. The<br>longer the project has been running and there are design changes, the more costs will be incurred.                                              |
|     |                                                 | PL1        | Make a material schedule which includes the time for ordering materials.                                                                                                                                                                        |
|     |                                                 | PL2        | The material orderer (contractor) must properly understand the work implementation schedule, so<br>that he knows when the material is ordered, and when the material arrives.                                                                   |
| X15 | Material Order Timeliness                       | PL3        | Created a schedule for procurement/ordering of materials.                                                                                                                                                                                       |
|     |                                                 | PL4        | Scheduling of material orders must be strict.                                                                                                                                                                                                   |
|     |                                                 | PA1        | Anticipate ordering time for materials that do take a long time in the manufacturing/shipping<br>process.                                                                                                                                       |
|     |                                                 | PL1        | The availability of materials in the market can hamper implementation time because it depends on third parties.                                                                                                                                 |
| X18 | There is a sublimer of Manufall in the Manhar   | PL2        | The contractor wrote to the owner and stated that the materials were no longer produced, so the<br>owner could propose a replacement without reducing the specs/quality.                                                                        |
| X18 | Limited Availability of Materials in the Market | PL3        | Order materials in advance and make a delivery schedule.                                                                                                                                                                                        |
|     |                                                 | PL4        | Market conditions can be seen, unless unpredictable conditions occur.                                                                                                                                                                           |
|     |                                                 | PA1        | If the material is rarely marketed, it means that you have to place an order from the beginning to<br>anticipate.                                                                                                                               |
|     |                                                 | PL1        | Late payment will definitely affect the time delay that occurs, because it involves the contractor's<br>cashflow and payments to subcontractors.                                                                                                |
|     |                                                 | PL2        | The contractor must send a letter to the owner explaining the conditions of the project, so that the<br>payment terms are accelerated.                                                                                                          |
| X28 | Late payment term by owner                      | PL3        | Anticipating the implementation of urgent work takes precedence.                                                                                                                                                                                |
|     |                                                 | PL4        | The owner must be able to reschedule the budget and transfer the budget during a pandemic<br>condition like this, so that the ongoing development continues smoothly.                                                                           |
|     |                                                 | PA1        | Must make back-to-back payments to vendors/sub-contractors so as not to disrupt cash flow. If this is not possible, they must seek funding to cover payments to their vendors/sub-contractors.                                                  |
|     |                                                 | PL1        | The Covid-19 (pandemic) outbreak is an unexpected event, having a negative impact on various<br>aspects including delays in construction work. Health protocols are only able to minimize the risk,<br>which is high in lockdown/project stops. |
| X35 | The outbreak of the corona virus (Covid 19)     | PL2        | To avoid/minimize the risk, it is necessary to increase the supervision of the process so that the workforce is not exposed to COVID-19 and there is a lockdown/the project stops.                                                              |
|     |                                                 | PL3        | Carry out the 5M health protocol more strictly.                                                                                                                                                                                                 |
|     |                                                 | PL4        | Unpredictable, there must be cooperation with various other government agencies.                                                                                                                                                                |
|     |                                                 | PA1        | -                                                                                                                                                                                                                                               |

#### Table 16. Actions for Handling Expert Recommendations

# 4. Conclusion

Based on the results of the analysis and discussion of the data that has been carried out in the previous chapter, several conclusions can be drawn as follows:

- 1. From the 2 data analysis methods that have been carried out in the previous chapter, it is known what factors cause the risk of time delays that occur in the work of the Pulogadung-East Jakarta PIK Flats Construction Project, which is as follows:
  - a. From multiple linear regression analysis obtained, 1 factor that affects the risk of time delays occurs, namely the material factor, and the influencing factor is the timeliness of ordering materials (X15) and limited availability of materials in the market (X18).
  - b. From the impact probability matrix table, four factors influence the risk of time delays: the labor factor and the influencing factor is Lack of Coordination at Work (X5) work document factors. Those that influence are Design Change (X7), cost factors, and those that influence are Late Payment Term by Owner (X28), and Other factors, and those that influence are Corona Outbreak (Covid 19) (X35) [14] [15].
- 2. The most dominant factor that causes the risk of time delays in the Pulogadung-East Jakarta PIK Flats Construction Project's work is the cost factor with variable Late Payment Term by Owner (X28) because it has the highest score of 5 and has been approved by experts.
- 3. Handling actions that need to be taken for the most dominant factor causing the risk of time delays that occur in the Pulogadung-East Jakarta PIK Flats Development Project work, namely Late Payment Term by Owner (X28), that is by setting a work schedule with urgent work to be done first. Less critical work is needed to save costs before the owner pays the term. And also, the contractor can send a letter to the owner regarding an explanation of the field/project conditions so that the owner can accelerate the payment of the term and the work can continue.

## References

- [1] M. A. Apriliyani, "Analisa Keterlambatan Berbasis Manajemen Risiko Pada Proyek Warehouse Lazada Tahap 2," *Rekayasa Sipil*, vol. 8, no. 2, 2020, doi: 10.22441//jrs.2019.v08.i2.02.
- [2] M. Andriani, H. Irawan, and N. Rizqa Asyura, "Improving Quality Using The Kano Model in Overcoming Competition in The Service Industry," Int. J. Eng. Sci. Inf. Technol., vol. 1, no. 4, 2021, doi: 10.52088/ijesty.v1i4.145.
- [3] N. C. Fertilia and N. Aulia, "Analis Risiko Penyebab Keterlambatan Pekerjaan Lift Pada Proyek Pembangunan Rumah Susun Di PT. AB," *J. Tek. Sipil*, vol. IX, no. 2, 2020.
- [4] M. Ikhsan and R. Rinaldy, "Estimated Flood Discharge in Downstream Krueng Meureubo of Pasi Pinang Section West Aceh Regency," Int. J. Eng. Sci. Inf. Technol., vol. 1, no. 1, 2021, doi: 10.52088/ijesty.vli1.41.
- [5] B. R. Kani, R. J. M. Mandagi, J. P. Rantung, and G. Y. Malingkas, "Keselamatan Dan Kesehatan Kerja Pada Pelaksanaan Proyek Konstruksi (Studi Kasus: Proyek Pt. Trakindo Utama)," *J. Sipil Statik*, 2013.
- [6] I. Ismiyati, R. Sanggawuri, and M. Handajani, "Penerapan Manajemen Resiko pada Pembangunan Proyek Perpanjangan Dermaga log (Studi Kasus: Pelabuhan DalamTanjung Emas Semarang)," *MEDIA Komun. Tek. SIPIL*, vol. 25, no. 2, 2020, doi: 10.14710/mkts.v25i2.19467.
- J. S. Pasaribu, "Development of a Web Based Inventory Information System," Int. J. Eng. Sci. InformationTechnology, vol. 1, no. 2, pp. 24–31, 2021, doi: 10.52088/ijesty.v1i2.51.
- [8] R. Rinaldy and M. Ikhsan, "Determinant Analysis Of Conflict On Project Results In Aceh Province," Int. J. Eng. Sci. Inf. Technol., vol. 1, no. 1, 2021, doi: 10.52088/ijesty.v1i1.37.
- [9] D. S. Nurhuda, W. Sutrisno, and D. L. C. Galuh, "Analisis Risiko Keterlambatan Waktu Pada Pelaksanaan Proyek Pembangunan SPBU (Studi Kasus di Kabupaten Bantul, Yogyakarta)," *Bangun Rekaprima*, vol. 05, 2019.
- [10] T. M. Sudarsono, O. Christie, and Andi, "Analisis Frekuensi, Dampak, Dan Jenis Keterlambatan Pada Proyek Konstruksi," J. Dimens. Pratama Tek. Sipil, vol. 3, no. 2, 2014.
- [11] N. Sana Ose, B. Mochtar, and M. Tohir, "Analisa Faktor Penyebab Terjadinya Keterlambatan Pelaksanaan Pada Proyek Pembangunan Gedung Kantor DPRD Kota Samarinda," *Kurva S J. Mhs.*, 2021.
- [12] R. N. Putri, A. Sandyavitri, and A. Malik, "Evaluasi Risiko Keterlambatan pada Proyek Konstruksi Pembangkit Listrik Tenaga Uap (PLTU) Tembilahan," *Jom FTEKNIK*, vol. 4, no. 2, 2017.
- [13] Y. Yurike, Y. Yonariza, and R. Febriamansyah, "Patterns of Forest Encroachment Behavior Based on Characteristics of Immigrants and Local Communities," *Int. J. Eng. Sci. Inf. Technol.*, vol. 1, no. 4, 2021, doi: 10.52088/ijesty.v1i4.175.
- [14] N. Maelissa, W. Gaspersz, and S. Metekohy, "DAMPAK PANDEMI COVID-19 BAGI PELAKSANAAN PROYEK KONSTRUKSI DI KOTA AMBON," J. SIMETRIK, vol. 11, no. 1, 2021, doi: 10.31959/js.v11i1.21.
- [15] A. Safira, A. Chandrawulan, and P. Faisal, "Pelaksanaan Kontrak Kerja Konstruksi Selama Pandemi Covid-19 Berdasarkan Perspektif Hukum Indonesia," *J. Huk. Doctrin.*, vol. 6, no. 1, 2021.